If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2x+x^2=3
We move all terms to the left:
-2x+x^2-(3)=0
a = 1; b = -2; c = -3;
Δ = b2-4ac
Δ = -22-4·1·(-3)
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-4}{2*1}=\frac{-2}{2} =-1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+4}{2*1}=\frac{6}{2} =3 $
| 42+-4x=14 | | 15.25-3.8x=-26.7+2.2x | | =1/2y-16 | | -5x+101=51 | | 110-9x=20 | | 5/2m=2m+5 | | 3x+14=124 | | 56=j+2 | | (5x-5)+(6x-27)=180 | | 2x+72=84 | | -16t^2+16t+370=0 | | -4x+101=73 | | 9(2-3x)-29=8×-(x-23 | | (4-p)3+p=16 | | -5.2X+59.9=15.9+1.8x | | 61+5x-15=x | | 8x+35=75 | | 8x+35=105 | | x^2+(2x)^2=125 | | 20+7k=6 | | 8x+35+8x+35=180 | | 0=-3.5t^2+210t | | 10x+25+8x+35=180 | | 2/3n+7/2=14 | | 12x^2+50x+50=0 | | 3/2n+2/7=14 | | X=-2+4x5 | | (7/12x+4)-(10/12x-11)+(9/12x-9)= | | 8x+35=180 | | 16y+7=119 | | 3/2n+7/2=14 | | -30=60x |